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Abstract

Repugnant transactions are sometimes banned, but legal bans sometimes give
rise to active black markets that are difficult if not impossible to extinguish. We
explore a model in which the probability of extinguishing a black market depends
on the extent to which its transactions are regarded as repugnant, as measured
by the proportion of the population that disapproves of them, and the intensity
of that repugnance, as measured by willingness to punish. Sufficiently repugnant
markets can be extinguished with even mild punishments, while others are insuf-
ficiently repugnant for this, and become exponentially more difficult to extinguish
the larger they become. (JEL D47, K42, P16)

Keywords: black market; repugnance; Markov process.

1 Introduction

Why are drug dealers plentiful, but hitmen scarce? I.e. why is it relatively easy
for a newcomer to the market to buy illegal drugs, but hard to hire a killer? Both
of those transactions come with harsh criminal penalties, vigorously enforced: In the
U.S., half of Federal prisoners have drug convictions,1 and murder for hire is treated
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as murder for both the buyer and the hitman, i.e. both principal and agent.2 3

More generally, many transactions are repugnant, in the specific sense that they
meet two criteria: some people would like to engage in them, and others think that
they should not be allowed to do so (Roth, 2007). But only some repugnances become
enacted into laws that criminalize those transactions, and only some of those banned
markets give rise to active, illegal black markets. Only some of those black markets
are so active, yet so difficult to suppress, that the laws banning them are eventually
changed so as to allow the transactions that cannot be suppressed to be regulated.
Laws that exact harsh punishments but are ineffective at curbing the transactions
that they punish may come to be seen as causing harm themselves. Some well-known
examples include Prohibition era laws against selling alcohol in the U.S., or laws in
much of the world that once banned homosexual sex (and in some places still do).

Markets for opioids (and other prohibited drugs) offer a salient current example.
Black markets for drugs are so active and so harmful that many countries have begun
to consider whether and how to modify laws that ban them absolutely, or to at least
modify the way these illegal marketplaces operate by giving drug users access to
legal “harm reduction” resources (such as clean needle exchanges to avoid combining
addiction with infection, or safe injection facilities to avoid fatal overdoses4). However
these proposals for harm reduction also meet with considerable opposition: they are

2In the U.S., although murder is generally a State offense, the commercial aspect of murder for hire
often qualifies it as a Federal crime under 18 U.S.C. 1958 - USE OF INTERSTATE COMMERCE
FACILITIES IN THE COMMISSION OF MURDER-FOR-HIRE, https://www.gpo.gov/fdsys/
granule/USCODE-2011-title18/USCODE-2011-title18-partI-chap95-sec1958. Regarding the
buyer and the hitman, see U.S. Attorneys’ Manual, “1107. Murder-for-Hire—The Offense,” https:

//www.justice.gov/usam/criminal-resource-manual-1107-murder-hire-offense. For 2016,
the FBI estimates that there were 15,070 homicides in the U.S., but does not break them
out by type https://ucr.fbi.gov/crime-in-the-u.s/2016/crime-in-the-u.s.-2016/tables/
expanded-homicide-data-table-1.xls.

3We use murder for hire only as an illustrative example of a market in which it is hard to transact,
partly because of the difficulty of trying to gather reliable empirical data on an illegal market that
may have few transactions. Note that there are sites on the ‘dark web’ that claim to offer murder
for hire, but seem likely to function as a way to separate the gullible from their bitcoins, see e.g.
https://allthingsvice.com/2016/05/14/the-curious-case-of-besa-mafia/. There is also a
satirical site that appears to offer hitmen “for rent,” and reports having received some inquiries that
looked serious enough to report to the authorities, see https://rentahitman.com/. Note further
that there are criminal organizations that are capable of murder, which employ hitmen for the
purpose (i.e. this is an in-house capability of the organization, rather than one that they purchase
on the market; see e.g. Shaw and Skywalker, 2016, and Brolan, Wilson, and Yardley 2016), and
there have been non-employee hitmen: e.g. Schlesinger (2001) describes a particular prolific killer
who was a contractor to several criminal organizations. Mouzos and Venditto (2003) study contract
killings in Australia and report that “The category of “contract killing” [that become known to the
police] makes up a small percentage of total homicides in Australia (about 2% over a thirteen year
period (1989/90 –2001/02).” Reports are rare in the U.S. as well, and successful murders for hire are
rare and also seem mostly to involve criminal associates (see e.g. Telford, 2018 for one such report).
Murder itself is relatively rare, see the statistics in the previous footnote.

4See e.g. https://harmreduction.org/.
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repugnant themselves to many of those who support an absolute ban, and who think
that vigorous law enforcement will eventually have the desired effect of substantially
eliminating the black market (see e.g. Rosenstein, 2018, by the deputy attorney
general of the United States).

This paper proposes a simple, stylized theoretical model to help understand why
some transactions can be relatively quickly eliminated by legally banning them, while
others are more resistant, to the point that they may be impossible to extinguish or
even suppress to low levels, no matter how long the effort is sustained.

The model will focus on the risks facing a potential entrant to the marketplace:
e.g. how risky is it to find a drug dealer, or a hitman? How likely are you to find
yourself dealing with a police officer instead? (For contract killing, it appears that
there is considerable risk to those seeking a hitman of being arrested before a murder
is carried out.5) Holding constant the penalties that arise from trying to complete the
illegal transaction with an undercover policeman, and the likelihood that a random
non-criminal citizen will report you to the police if you try to transact with them, the
larger the illegal market is, the greater will be the chance of successfully transacting
by finding a willing counterparty, and the safer it will be to try to enter it.

We focus on the long run because much of the discussion about whether to modify
existing laws and practices focuses on the question of whether continued, consistently
vigorous law enforcement will eventually have the desired effect of substantially elim-
inating the black market, even if the efforts to date have not yet done so. The model
has two main results.

First, there are easy and hard cases from the point of view of driving a market
to extinction by criminalizing it. The easy cases are those in which the magnitude
of the punishment together with the willingness of the population to support the
law by reporting and punishing infractions eventually make it too risky for potential
new entrants to enter, so that they become law abiding for fear of punishment. The
harder case is when the magnitude of the feasible punishment combined with the
(un)willingness of the population to support enforcement of the law mean that, if the
illegal market is sufficiently large, some portion of the population will be willing to
risk entering it. In this case, the eventual extinction of the market will depend on its

5Mouzos and Venditto (2003), writing about their subsample of attempted but not completed
contract killings, say (p54) “of the 77 incidents examined in this study, 38 were detected through
a witness coming forward and then progressed by means of a covert police operation and 37 were
detected through a witness coming forward and notifying police of the contract (two incidents did
not specify the method of detection).” In contrast, they report that contract killings associated with
organized crime are much less likely to be solved (p64): “More than a third of unsolved contract
murders were committed as a result of conflict within criminal networks/organised crime (35%),
compared with only six percent of solved contract murders.” So murders within organized crime
seem to be carried out by professionals, but these are apparently much less accessible to people
whose motivation for murder is e.g. “Dissolution of a relationship” or “Other domestic,” since
Mouzos and Venditto report that all of those cases of murder for hire known to the police have been
solved. (Once again, we have no way of estimating what part of the market may be missing from
these data, e.g. because of hits so professional that they are not noticed to be homicides. . . )
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size, and the probability that the market will remain active enough to sustain itself
and can never be extinguished is positive. The second main result says that these
hard cases become exponentially harder to extinguish the larger the foothold that the
banned market has achieved.

Together, these results can help us understand how, when we outlaw some re-
pugnant transactions, we sometimes inadvertently help design self-sustaining black
markets. This can inform the discussion of when social policy towards particular
repugnant markets should take the form of a “war on drugs,” and for which black
markets we should consider harm reduction.

Our work is closely related to the economics literature studying the interaction
between law enforcement and social norms. Acemoglu and Jackson (2017) develop
a dynamic model in which law-breaking is detected in part by whistle-blowing, and
discover that “laws that are in strong conflict with existing norms backfire: abrupt
tightening of laws causes significant lawlessness, whereas gradual imposition of laws
that are more in accord with prevailing norms can successfully change behavior and
thus future norms.” The main difference between their and our models is that we
focus on the population evolution of black markets, instead of scrutinizing individual’s
law-abidingness. Akerlof and Yellen (1994) investigate the relationship between gang
crime, law enforcement, and community values, and come to the conclusion that
“the traditional tools for crime control-more police cars cruising the neighborhood
and longer jail sentences-wrongly applied, will be counterproductive because they
undermine community norms for cooperation with the police.” Learning from the
privatization process in the East European countries and Russia in the 1990s, Hay and
Shleifer (1998) also argue that “whenever possible, laws must agree with prevailing
practice or custom.”6 In a broader sense, our work is also related to the literature
concerning the optimal level (and effectiveness) of law enforcement. For instance, see
Beck (1968), Becker and Stigler (1974), Becker, Murphy, and Grossman (2006), and
a survey by Shavell (2009).

There is also an empirical literature on particular black markets that have proved
difficult to extinguish. (In this connection, see the exemplary work by Cunningham
and Kendall (2016, 2017) and Cunningham and Shah (2016, 2018) on modern markets
for prostitution.7) The theoretical model we explore here is meant to complement
empirical work on particular markets as an input to designing possible interventions
in those markets.

Section 2 lays out the model, section 3 explores the conditions under which the
black market can be eventually extinguished, and section 4 establishes some results
about the likely speed of extinction, and how the probability of extinction decreases

6See also Calvó-Armengol and Zenou (2004), and Ferrer (2010) for models in which crimes have
neighborhood externalities.

7On the market for hitmen, see Cameron (2014) who focuses on low prices from a very small
sample of “amateur” hits, and the citations already mentioned in footnotes; on drugs see Keefer and
Loayza (2010); on human organs see Scheper-Hughes (2000). Much of the economic literature on
black markets seems to be on prices in markets that evade currency regulations.
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quickly as the black market becomes established. Section 5 discusses the kinds of
insights we might hope to derive from such a simple model when our attention turns
to particular black markets, such as those for prostitution, narcotics, and hitmen, and
section 6 concludes. While the model is simple to describe, analysis of the Markov
chains it generates requires some care, and much of that analysis is presented in the
Appendices.

2 The Model

For simplicity of exposition, we will present the model as if the illegal transaction
in question involves drugs (but keep in mind other illegal markets, which are met with
different degrees of repugnance, like those for murder, prostitution, or horse meat...).8

There are 3 types of people. Those belonging to the first type are currently using
drugs and are connected to drug dealers; people of the second type are drug despisers:
they find drug use repugnant and so they do not use drugs and if they observe someone
seeking to buy drugs, with probability r they will report to the police and the police
will act; the third type consists of drug neutrals who do not use drugs and are not
aware of any source of drugs, but do not report drug related activities to the police.
At any time t = 0, 1, 2, ... denote by Xt, Yt, Zt the current number of drug users,
despisers and neutrals in the system, respectively. With a mild abuse of notation we
say a person belongs to Xt if he is a drug user, similarly for Yt and Zt.

At time t = 0 the population composition is (X0, Y0, Z0) and at each time t one
outsider joins the system. This outsider is either a drug despiser (with probability
p) or a potential drug user (with probability 1− p). If he is a drug despiser, then he
joins Yt directly; if he is not a drug despiser, he needs to decide whether he should try
to find drugs. He has two options: he could choose to live a peaceful life and join Zt
directly, or he could randomly draw a person from the current population, and ask:
“do you know where I can find drugs?” If he asks this question to a current drug
user, he will be introduced to a reliable drug dealer, receive drugs and join Xt. If he
asks a member of Yt, there is a probability r that he is reported to the police and
is arrested, convicted, and punished; and with probability 1 − r, the drug despiser
will say “I don’t know” (or the police will not act on the report), in which case this
newcomer will draw another person (memorylessly) in the system and repeat this
process. If he asks this question to a person in Zt, he always receives the answer “I
don’t know,” and he will again draw another person (memorylessly) in the system
and repeat this process. If someone is caught and punished during the process of
finding drugs, he later joins Zt.

8While the model is simple, its analysis presents some novel difficulties, which will cause us
to consider a number of related processes, for which we draw on a large mathematical literature
on Markov chains and continuous time martingales (see e.g. Le Gall 2012, Kingman 1992, and
Revuz and Yor 2013). The Markov process (Xt, Yt, Zt)t≥0 studied here can be seen as a multi-type
population model with mutations or a generalized Polya urn model.
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The utility to a potential drug user of getting drugs is normalized to 1, his utility
of joining Zt is 0, and his utility of going to jail is −K for some K > 0. Denote by q
the probability that he eventually finds drugs, if he decides to try. The easiest way to
compute q is by first step analysis: in his first encounter, with probability Xt

Xt+Yt+Zt
,

he meets a drug user and successfully finds drugs. With probability Yt
Xt+Yt+Zt

, he
meets a drug despiser and, conditional on that, with probability r he will be reported
to the police and penalized, while with probability 1 − r, he needs to draw another
person and his future probability of success is again q. With probability Zt

Xt+Yt+Zt
, he

meets a drug neutral, and he will redraw and his future probability of success is q.
Therefore

q =
Xt

Xt + Yt + Zt
· 1 +

Yt
Xt + Yt + Zt

· r · 0 +
Yt

Xt + Yt + Zt
· (1− r) · q+

Zt
Xt + Yt + Zt

· q.

Solving for q we have q = Xt
Xt+r·Yt , and the probability of getting caught during the

process is 1− q = r·Yt
Xt+r·Yt .

Then the newcomer should choose to enter the market and attempt to buy drugs
if and only if his expected utility 1 · Xt

Xt+r·Yt − K · r·Yt
Xt+r·Yt > 0, which simplifies to

Xt > Kr · Yt.
This describes a Markov Chain and we are interested in how Xt, Yt, Zt evolve with

time. Notice Zt does not influence the newcomer’s decision, therefore it does not
matter when a prisoner is released from jail, as long as he joins Zt afterwards. For
simplicity, assume all prisoners are released during the same time period they join
the system, so that we can describe the transition of the Markov Chain simply, as
follows:9

P ((x+ 1, y, z)|(x, y, z)) = (1− p) x

x+ ry
1{x

y
>Kr}

P ((x, y + 1, z)|(x, y, z)) = p

P ((x, y, z + 1)|(x, y, z)) = (1− p) ry

x+ ry
1{x

y
>Kr} + (1− p)1{x

y
≤Kr}

There are three parameters that we take as fixed in this model that, when the re-
sults are interpreted can be viewed as responsive to policy decisions. The probability
p that the newcomer finds drugs repugnant is something that a policy maker could
seek to influence through education. The probability r that concerned citizens will
report drug activity to the police and that the police and courts will act effectively
on such reports could be influenced both by public relations and by changing the
intensity of police activities. The size of the legal penalty K can be influenced by
laws concerning the length of prison sentences or monetary penalties. However these
may not all be easy to change, and in a more complete model these parameters could

9The indicator functions require us to study not only the limit, but also the whole trajectory.
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be at least partially endogenous. That is, the degree of public repugnance, and the
willingness of police and juries and legislators to act against an illegal market may
depend in part on how common are the illegal transactions and how large is the pro-
posed punishment. In Appendix D we provide some simulations in this regard and
show that our main results are robust.10

A market becomes extinct if and only if the long run proportion of drug users in
the population goes to 0. That is, we can seek to understand the probability of this
event:

Definition 2.1. Market Extinction:

Extinction =

{
lim
t→∞

Xt

Xt + Yt + Zt
= 0

}
.

Notice that if ever Xt ≤ Kr ·Yt, then for all t′ ≥ t, Xt′ ≤ Kr ·Yt′ , i.e. no newcomer
after time t will try to find drugs. So if Xt ≤ Kr · Yt happens at some time t, then
the market becomes extinct.

Hereafter we assume X0 > Kr · Y0, so at least the first few newcomers will be
attempting to acquire drugs.

Definition 2.2. We define a stopping time:

τ = inf {t ∈ N|Xt ≤ Kr · Yt}

and denote the ratio between drug users and drug despisers to be

Rt =
Xt

Yt

then an equivalent definition of τ is

τ = inf {t ∈ N|Rt ≤ Kr} .

We are interested in the following questions:

• Under which condition does the limit of Xt
Xt+Yt+Zt

go to 0, i.e. the market becomes
extinct?

• If there is no extinction (we say the market survives in this case11), then
what will be the long run composition of the market? In other words, will
( Xt
Xt+Yt+Zt

, Yt
Xt+Yt+Zt

, Zt
Xt+Yt+Zt

) have a limit?

10See Lochner and Moretti (2004) for an empirical study on how education significantly reduces
crime, and Dyck, Morse, and Zingales (2010) on whistle-blowing behavior in corporate fraud.

11That is, the market survives if the limit of Xt

Xt+Yt+Zt
does not exist, or if the limit is non-zero.
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• Suppose we are in a world in which the market could either survive or become
extinct, then what do we know about the probability of eventual extinction?

We will answer the first two questions in section 3, and the last one in section 4.
Before we carry out our analysis, here are two simple facts about the model:

Proposition 2.3. Almost surely, limt→∞
Yt

Xt+Yt+Zt
= p.

This follows from the strong law of large numbers. Note that the existence of
limt→∞

Xt
Xt+Yt+Zt

does not follow from the strong law of large numbers, since the
probability the newcomer decides to join Xt depends on the current state of the
world.

Proposition 2.4. If τ <∞, then almost surely, limt→∞( Xt
Xt+Yt+Zt

, Yt
Xt+Yt+Zt

, Zt
Xt+Yt+Zt

) =

(0, p, 1− p), therefore τ =∞ is a necessary condition for the market to survive.12

This is simply a restatement of our analysis below Definition 2.1: once the stopping
time is reached, Xt stays constant and its limiting proportion is zero.

Below is a summary of the model.

Xt number of drug users in the system
Yt number of drug despisers in the system
Zt number of drug neutrals in the system
Rt Xt/Yt
p probability that the newcomer is a drug despiser
r probability of reporting to police (for Yt)
1 utility of using drugs
0 utility of joining Zt directly
−K utility of getting caught

q = Xt
Xt+r·Yt probability of finding drugs

τ first time when Xt ≤ Kr · Yt

Table 1: Summary of the model

12In fact, τ = ∞ is also a sufficient condition for the market to survive. An informal argument
goes as follows: Suppose τ = ∞, then Xt

Yt
> Kr for all t. By Proposition 2.3, Yt

Xt+Yt+Zt

a.s.→ p.

Therefore with probability 1, limt→∞
Xt

Xt+Yt+Zt
6= 0, i.e. the market survives. A formal proof of this

statement can be found in section 3. We can then think of τ as the death time of the market, e.g.
in part 2 of Theorem 4.1. In other words, the market becomes extinct if and only if entry eventually
becomes unprofitable, and once it becomes unprofitable it stays unprofitable. This gives us another
definition of extinction:

Extinction = { lim
t→∞

Rt = 0} = { lim
t→∞

Rt < Kr} = {τ <∞}.

(We haven’t shown that limt→∞Rt exists when τ = ∞, which is proven by Lemma B.1 in the
appendix.)
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3 Long Run Behavior

We first provide a heuristic analysis: suppose such a market survives and reaches
a steady state, i.e. limt→∞Rt exists, then what should it be? By the law of large
numbers we have:

lim
t→∞

Xt + Zt
Yt

=
1− p
p

.

On the other hand, the long run ratio between Xt and Zt should be the same as
the ratio between the probability of the newcomer joining Xt and Zt, therefore

lim
t→∞

Xt

Zt
= lim

t→∞

q

1− q
= lim

t→∞

Xt

r · Yt
.

Combine these two equations we obtain that

lim
t→∞

Xt : Yt : Zt = 1− p− pr : p : pr.

Hence we should have

lim
t→∞

Rt =
1− p− pr

p
≡ R̄ .13

We can now compare this limiting ratio with the decision threshold Kr, and get
three cases:

1. Controllable: R̄ < Kr ⇔ p > 1
1+r+Kr

. In this case, clearly Rt will eventually
drop below Kr, which means the market can never survive.

2. Borderline: R̄ = Kr ⇔ p = 1
1+r+Kr

.

3. Uncontrollable: R̄ > Kr ⇔ p < 1
1+r+Kr

. Then conditional on surviving, the
limit of Rt is indeed larger than Kr, so the market should have a chance to
survive.

The difficult problem here is to show the existence of the limit of Rt. One may also
be concerned that R̄ could be negative depending on the parameter values, which is
implausible (i.e. the quantity 1−p−pr

p
≡ R̄ may be negative, but limt→∞Rt can never

be). We now formally state the first main theorem of this paper, which basically
confirms this intuitive analysis.

Theorem 3.1 (Controllable and uncontrollable black markets). There exist
three cases,

13Notice that R̄ is independent of K, as conditional on market survival, the transition probabilities
do not depend on K.

9



1. Controllable: p(1 + r + Kr) > 1. In this situation, the market will become
extinct with probability 1 and Rt

a.s.→ 0.

2. Borderline: p(1 + r + Kr) = 1. If in addition, 1 − p ≥ 2pr ⇔ K ≥ 1 then it
behaves like the controllable case; if 1 − p < 2pr ⇔ K < 1, then it behaves like
the uncontrollable case.

3. Uncontrollable: p(1 + r + Kr) < 1. The market survives with positive proba-
bility. And when it survives, Rt

a.s.→ R̄.

Remark 3.2 (Measuring repugnance). We can think of I ≡ p(1 + r) as an index
reflecting the repugnance with which the market is perceived. p reflects the extent of
repugnance (the proportion of people who find the market repugnant) and r represents
the intensity of repugnance as reflected in the likelihood that a disappovingly-observed
repugnant action will be reported and acted upon. When I > 1, the market is always
controllable. When I = 1, the black market will also eventually become extinct no
matter how small the punishment K is (note that R̄ = 1−I

p
). I < 1 means the general

population finds the market insufficiently repugnant to guarantee that the black market
will be controllable, and to make the market controllable the policy maker needs to
be able to set a sufficiently large punishment. (The present simple model does not
consider what limits might exist on how large a punishment can be set, or whether
demanding too large a punishment would reduce the probability r that violations are
reported and acted upon.14)

The proof of Theorem 3.1 can be found in Appendix B. Although the heuristic
analysis appears to be simple and intuitive, the rigorous proof turns out to be highly
non-trivial, especially for the borderline case. We end up borrowing a technique from
population models in mathematical biology and study our discrete process through a
continuous time Markov jump model.

The heuristic analysis above already explains why the market can never survive in
the controllable case. Below we offer an argument on why the market survives with
a positive probability in the uncontrollable case.

First we know that a necessary condition for market survival is τ =∞ by Propo-
sition 2.4. On the other hand, it will also be sufficient: Lemma B.1 in the appendix
states that τ = ∞ implies Rt = Xt

Yt

a.s.→ R̄, and by Proposition 2.3, Yt
Xt+Yt+Zt

a.s.→ p.

Together they imply Xt
Xt+Yt+Zt

a.s.→ pR̄ > pKr > 0, which means the market survives
with probability 1. Therefore our job is to show P[τ =∞] > 0.

To analyze this problem, let’s define St = Xt−KrYt. Our initial condition implies
that S0 > 0, and it is clear that Xt > Kr · Yt if and only if St > 0. Therefore the
probability that a market survives equals to P[St > 0 ∀t|S0 > 0]. How would St
behave? As long as St > 0, then St+1 = St + 1 with probability

q(1− p) =
Xt

Xt + r · Yt
(1− p) > K

1 +K
(1− p)

14See for example: Acemoglu and Jackson (2017), and Akerlof and Yellen (1994).
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(since St > 0⇒ Yt <
1
Kr
·Xt); St+1 = St−Kr with probability p; and St+1 = St with

probability

(1− q)(1− p) =
r · Yt

Xt + r · Yt
(1− p) < 1

1 +K
(1− p).

We then define a new Markov chain S̄t: for t ≥ 1 let

Wt =


1 w.p. K

1+K
(1− p)

−Kr w.p. p
0 w.p. 1

1+K
(1− p)

(w.p. stands for “with probability”), then define S̄n = S0 +
∑n

t=1Wt. It is clear that
the probability that St never enters (−∞, 0] is lower bounded by that of S̄t. We know
S̄t is a random walk and notice that the drift

E(Wt) = 1× K

1 +K
(1− p)−Kr × p =

[1− p(1 + r +Kr)]K

1 +K
> 0

when p < 1
1+r+Kr

, which means P[S̄t > 0 ∀t|S0 > 0] > 0, therefore P[St > 0 ∀t|S0 >
0] > 0, i.e. with a positive probability the market survives. This argument can be
formalized through coupling, which can be found in the appendix. �

We will study this probability of market survival P[St > 0 ∀t|S0 > 0] in detail in
the next section.

Note that the comparative statics at the threshold p(1 + r + Kr) = 1 are clear:
as p, r and K increase, it becomes easier to extinguish the market. However if p and
K are not too large, then even the maximum intensity of repugnance, r = 1 may be
insufficient to make the black market controllable.

One natural way of extending this model is by endogenizing the parameters p
and r. In particular, the extent and intensity of repugnance may depend on the
current proportion of drug despisers in the system. That is, pt+1 = H( Yt

Xt+Yt+Zt
) and

rt+1 = Q( Yt
Xt+Yt+Zt

), where H and Q are two continuous functions. This extension is
discussed in detail in Appendix D. Here we briefly present a few interesting features
of this extension. First, pt and rt converge almost surely (as random variables),
moreover, the limiting points of pt, p

∗ satisfies p∗ = H(p∗); however not all the fixed
points of H are stable: only some of them are in the support of the limit, while others
are saddle points. In other words, the limit of pt is a distribution over some fixed
points of H. And the limit of rt is r∗ = Q(p∗). Second, if some of these stabilizing p∗’s
satisfy p∗(1 + r∗+Kr∗) < 1, then the market will survive with a positive probability,
and R̄∗ = 1−p∗−p∗r∗

p∗
is one potential limit for Rt = Xt

Yt
. (If multiple such R̄∗’s exist,

then the limit of Rt is a distribution over them.) Otherwise, if p∗(1+r∗+Kr∗) > 1 for
all such p∗, then the market becomes extinct almost surely. Simply put, the market
isn’t too different from the baseline model, we just replace p and r with p∗ and r∗.15

15We can formally prove the convergence of Yt

Xt+Yt+Zt
, pt and rt, but not the convergence of

Xt

Xt+Yt+Zt
, which is verified through simulations.
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Nonetheless, the world is no longer binary: instead of having only two possible
limiting states, market survival and extinction, we may have different levels of drug
activities when the market survives (i.e. when there are multiple R̄∗’s). This is, in
spirit, similar to the multiple equilibria discussions in the traditional economic models
on crimes, although the underlying force here is no longer the strategic interactions,
but the stochastic nature of the process. (See for example Glaeser et al 1996 and
Calvo-Armengol and Zenou 2004.)

4 Extinction Probability and Speed

One might be surprised that the results in Theorem 3.1 have nothing to do with
the initial state of the world (X0, Y0, Z0), other than the assumption X0 > Kr ·Y0. It
seems reasonable that a market which is infested with drug users would require more
effort to eliminate. Indeed, in this section we show that in the uncontrollable case,
i.e. when p < 1

1+r+Kr
, the probability of market extinction decays exponentially in

the initial state of the world. (We are back to the constant p and r case.)

Before beginning the analysis, consider how policy makers could have some con-
trol over the initial states. One example would be the regulation of synthetic drugs.
When a new synthetic drug becomes available, it takes time before it can be banned.
The number of users it attracts before it is banned may be an important factor for
the prospects of extinguishing the market.16 So the speed of initial regulation may be
consequential, and there may be markets that could be successfully prevented only
by prompt action, and not when they have become well established.

The exact probability of market survival, P[St > 0 ∀t|S0 > 0] is quite difficult to
compute directly. We will use P[S̄t > 0 ∀t|S0 > 0] to provide a lower bound. The
main technique we use here is the so called exponential martingale (Wald, 1944, see
also chapter 7.5 of Gallager 2012). For the sake of exposition, we will define another
stopping time:

τ̄ = inf
{
t ∈ N|S̄t ≤ 0

}
.

Then P[S̄t > 0 ∀t|S0 > 0] = P[τ̄ =∞].
Now we present the second main theorem of this paper:

Theorem 4.1 (The probability of market survival). In the uncontrollable case:

16A similar story can be told about the censorship of video games in China. Chinese authorities
do not like violent and bloody video games. (One interesting consequence is that the blood effects
on Chinese servers are green instead of red.) The authorities ban excessively violent games from
live streaming, which is one of the biggest ways of advertising games. However, when a new game
comes out, it takes time for the government to issue such a ban. Whether such a game sells well in
China depends in part on how large a player base it accumulates, before the media ban.
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1. The probability of market survival

P[St > 0 ∀t|S0 > 0] ≥ 1− eθ∗S0 ,

where S0 = X0 −Kr · Y0, and θ∗ is a negative constant.

2. Conditional on market extinction, it decays exponentially fast. That is, for every
θ ∈ (θ∗, 0), and t > 0, we have

P[τ > t|τ <∞] ≤ 1

P[τ <∞]
eθS0+ψ(θ)t,

where ψ(θ) < 0.

The first part says that the probability of market extinction decays exponentially
in S0. And the second part says that if a market eventually becomes extinct, then
the probability that it survives longer than t decays exponentially in t, for any given
parameter values and initial states (X0, Y0, Z0) (then P[τ < ∞] is also fixed). Below
we provide a formal proof for the first part, so the readers can understand where these
θ and ψ come from. The proof for part 2 is similar, which can be found in Appendix
C.

Proof of part 1. Let’s define (recall that Wn = S̄n − S̄n−1)

φ(θ) = E[eθWn ],

ψ(θ) = log(φ(θ)),

and
Mn(θ) = eθS̄n−nψ(θ).

Then we can easily check that Mn(θ) is a martingale for any parameter value θ. In
fact,

E[Mn+1(θ)|S̄1, S̄2, ..., S̄n] = eθS̄nE[eθWn+1 |S̄1, S̄2, ..., S̄n]e−(n+1)ψ(θ) = Mn(θ).

Next we show that the equation ψ(θ) = 0, i.e. φ(θ) = 1 has two solutions. Notice
φ(0) = 1, so θ = 0 is one of them. We can also compute that,

φ′′(θ) = E[W 2
ne

θWn ] > 0

for all θ, i.e. φ is convex. Recall that in the uncontrollable case,

φ′(0) = E[Wne
0×Wn ] = E[Wn] > 0.

Then for small enough ε, φ(−ε) < 1, on the other hand,

lim
θ→−∞

φ(θ) > lim
θ→−∞

pe−Krθ =∞.

13



Thus φ(θ) = 1 must have another root θ∗ < 0 by the intermediate value theorem.
(And convexity of φ implies φ(θ) = 1 has no more than two roots, so φ(θ) = 1
has exactly two roots, 0 and θ∗.) Now we have Mn(θ∗) = eθ

∗S̄n is a martingale.
And we would like to apply the optional sampling theorem to it, with stopping time
τ̄ . However, the optional sampling theorem can not be directly applied to stopping
times that are potentially unbounded (without further restrictions on the martingale),
therefore we define another stopping time τ̄ ∧ t = min{τ̄ , t} for any finite time t, then
by the optional sampling theorem, we have:

E[eθ
∗S̄τ̄∧t ] = eθ

∗S0

⇒ E[eθ
∗S̄τ̄∧t |S̄τ̄∧t ≤ 0]P[S̄τ̄∧t ≤ 0] + E[eθ

∗S̄τ̄∧t|S̄τ̄∧t > 0]P[S̄τ̄∧t > 0] = eθ
∗S0 .

Since θ∗ < 0, then
eθ
∗S̄τ̄∧t ≥ eθ

∗×0 = 1

when S̄τ̄∧t ≤ 0, and notice

E[eθ
∗S̄τ̄∧t |S̄τ̄∧t > 0]P[S̄τ̄∧t > 0] ≥ 0.

Therefore we have

eθ
∗S0 ≥ E[eθ

∗S̄τ̄∧t|S̄τ̄∧t ≤ 0]P[S̄τ̄∧t ≤ 0] ≥ P[S̄τ̄∧t ≤ 0].

By definition of τ̄ , S̄τ̄∧t ≤ 0 if and only if τ̄ ≤ t, then

P[S̄τ̄∧t ≤ 0] = P[τ̄ ≤ t].

Thus
P[τ̄ ≤ t] ≤ eθ

∗S0 .

Finally let t→∞, then
P[τ̄ <∞] ≤ eθ

∗S0 .

Therefore

P[St > 0 ∀t|S0 > 0] ≥ P[S̄t > 0 ∀t|S0 > 0] = P[τ̄ =∞] ≥ 1− eθ∗S0 .

Remark 4.2. Part 2 of Theorem 4.1 tells us that if a market will become extinct
eventually, then it dies exponentially fast, which in turn implies that, if a market has
survived for a very long time, then it is likely to survive forever. This implies that, if
we struggle to kill a market for a long time without much success, then unless we can
change the parameters, our chances of eventual success diminish rapidly.
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5 Discussion

Simple conceptual models like the one presented here are not meant to be simple
guides to public policy, nor sources of precise prediction about particular markets.
Policy decisions regarding specific markets require input from detailed studies of how
each such market operates and responds to changes. The model presented here is
intended rather to provide conceptual clarity to complex issues that may apply to
many markets, and to provide some input of this kind to policy and design decisions.

Thus the model and its main results about the extent and intensity of repugnance,
and the likelihood of extinguishing relatively well-established black markets (Theorem
3.1 and 4.1) can help us understand why some black markets persist but others do not,
and when we might usefully consider harm reduction measures rather than simply
pursuing the goal of driving the market to extinction.

For example, it appears that in California, where it is a felony to sell horse meat
for human consumption, there is virtually no black market for horse meat.17 In terms
of our model, the reason is likely that restaurants that contemplate serving horse
meat, ranchers and butchers who might like to supply it, and consumers who might
like to eat it are deterred by the low potential reward (horsemeat may be tasty but it
apparently isn’t addictive), compared to the probability of detection and punishment.
So it appears that this market is naturally controllable.

The case of prostitution is quite different: there are markets for prostitutes around
the world, including in places like the U.S. where both sides of the transaction are
illegal.18 However the maximum punishments prescribed by U.S. state laws are mild
(compared for example to the punishments prescribed for drug offenses, and com-
pared to other sex offences that require those convicted to register as sex offenders).19

Indeed, the relatively low punishments (and infrequent enforcement, and legalization
in many countries) may have evolved as harm reduction measures in the face of a his-
torical inability to control this market even with larger punishments, and a judgment
that e.g. filling the prisons with offenders might do more harm than good. Theo-
rem 4.1 suggests that, given that a market of non-negligible size presently exists, it
would now be very hard to extinguish it merely by increasing punishments to higher
but historically ineffective levels.

The market for illegal narcotics is still different: as already noted, it persists de-
spite harsh punishments. These punishments are apparently insufficient to deter new
users, some of whom may perceive compellingly high rewards, having already become

17See Roth (2007) for background, and note that internet sites such as http://www.grubstreet.
com/2013/03/20-restaurants-where-you-can-eat-horse-around-the-world.html, which list
venues at which horse meat may be available in Toronto and Mexico and in some American states,
have no listings for California.

18See Cunningham et al. for details of their operation.
19For a list by state of penalties for prostitutes and for customers, see e.g. https://

prostitution.procon.org/view.resource.php?resourceID=000119.
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addicted via legally available drugs.20 Because there is presently a big population of
drug buyers and sellers, Theorem 4.1 suggests that continued strict enforcement of ex-
isting laws is unlikely to extinguish the market (but see Rosenstein 2018 who reaches
the opposite conclusion from a position of great authority in law enforcement).

Finally, to return to the example mentioned in the introduction, it does not appear
that any harm reduction measures are needed in connection with the spot market for
hitmen in the United States. This market may be so widely and intensely viewed as
repugnant so as to be naturally controllable, and even if not, the present apparently
low population of buyers and sellers suggests that it is and can continue to be con-
trolled with the feasibly large penalties that are already in place. The situation may
be different in places with a substantially higher incidence of lethal violence.21

6 Conclusion

Designing legal marketplaces involves trying to make them safe and reliable enough
to attract many participants. In the opposite direction, the idea behind laws that
criminalize markets that some influential part of society finds repugnant is that the
risk of being penalized will make the market unsafe, and deter participation.22 How-
ever, if the market is insufficiently repugnant in extent or intensity, even substantial
legal penalties “on the books” may be insufficient to deter participation if those penal-
ties cannot gain enough social support to be reliably enforced. Note also that if the
feasible punishment is not too large, and if the extent of repugnance among the popu-
lation is low, then even the maximum intensity of repugnance among those who wish

20While our simple model does not distinguish between different kinds of entrants to the market,
there is increasing evidence that people who are already addicted to opioids legally prescribed for
pain relief (see e.g. Finkelstein et al. 2018) often enter the market for illegal narcotics when their
legal access is ended. See also Abby et al. (2018) who argue that the introduction of an abuse-
deterrent version of OxyContin in 2010 increased heroin use, and Brandeau, Pitt and Humphreys
(2018), who further argue that sharply restricting opioid prescriptions may be counterproductive,
and that harm reduction measures will offer more immediate relief.

21See e.g. Shirk (2010) and Dell (2015) on drug violence in Mexico, and more recent news re-
ports on murder rates in Brazil, Colombia, Mexico and Venezuala, such as https://www.cbc.ca/

news/world/mexico-record-homicide-rate-1.4497466. While these reports do not distinguish
between employed and spot market hitmen, in the context of our model the concern is that there
would be some spillover as it becomes easier to find hitmen of any sort, see e.g. the report by Onishi
and Gebrekidan (2018) on political assassinations in South Africa.

22Illegal markets may also be unsafe because participants are deprived of the recourse to the
laws that protect buyers and sellers in legal markets, and this may cause negative externalities in
addition to the repugnance of the banned transactions themselves. For example, when heroin which
may be mixed with fentanyl is purchased from criminals, there are few guarantees as to the purity
and accuracy of the dose being purchased, which may lend itself to increased risk of fatal overdose.
Harm reduction measures to reduce overdoses are sometimes opposed by those who regard the added
risk as part of the deterrent to participation in the black market, i.e. as a feature of the market
design, not an unwelcome side effect.
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to ban the market may be insufficient to control the black market.23 And as an illegal
market becomes larger, it becomes more likely that those who wish to participate
in it can do so without encountering those who would penalize them. Consequently,
black markets that have operated successfully for a long time become increasingly
hard to eliminate if the underlying social parameters and legal punishments cannot
be changed.

But changing social repugnance, and even increasing legal punishments in an ef-
fective way, may be difficult. Policy makers may be able to influence the extent or
intensity of repugnance by education and public relations. But because legislators
don’t have easy or direct access to who feels how much repugnance, this is likely to
be more difficult than passing legislation. At the very least, changing widespread
attitudes takes time. And increasing mandated punishments beyond what social re-
pugnance will support can be counterproductive if it makes citizens less likely to
report illegal transactions and juries less likely to convict.24 So we may never be able
to completely eliminate some markets, despite the fact that they cause considerable
harm. Hence harm reduction should be in our portfolio of design tools for dealing
with repugnant markets that we can’t extinguish despite the harm they may do.

Appendix A Notations and Preliminaries

We first introduce important definitions and lemmas used in the proof.

A.1 Markov Jump Process

We give a quick and intuitive introduction of Markov jump process. For details,
consult Chapter 5 of Durrett (2010) and Chapter 3 of Eberle (2009) for example.

Definition A.1 (Markov jump process). A Markov jump process is a random process
{Ut}{t≥0} taking values in a state space E. For every couple (i, j) ∈ E × E, i 6= j,
it has a rate of jump qij. Conditional on Ut = i, we have a family of independent
exponential random variables τij of parameter qij. Then Ut stays constant for time
minj∈E τij and jumps to the new state: arg minj∈E τij.

Remark A.2. This type of random process with “left limit and right continuous” is
called “càdlàg” (“continue à droite et limite à gauch” in French).

We can easily verify that it is a Markov process with the help of the memoryless
property of exponential random variables. One equivalent definition gives the con-
nection between Markov jump processes and classical discrete time Markov chains.

23So a small intense group may be sufficient to pass legislation, but insufficient to enforce it.
24See e.g. Bindler and Hjalmarsson (2018), who point to an increase in convictions following a

reduction in penalties.
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Definition A.3 (Equivalent definition). Another way to define a Markov jump pro-
cess is setting a series of jump times {σn}n≥0 where σ0 = 0 and {σn+1 − σn}n≥0 are
independent exponential random variables of parameter

∑
j∈E qij if Uσn = i. At jump

times, it’s a Markov chain of transition matrix

P[Uσn+1 = j|Uσn = i] = pij =
qij∑
k∈E qik

.

Corollary A.4 (Embedding). If we only look at the process at jump times {Uσn}n≥0,
it is a Markov chain of transition matrix pij =

qij∑
k∈E qik

.

A.2 Generator

The so-called generator is a useful tool in studying Markov jump processes. See
Chapter 7 of Revuz and Yor (2013) for details.

Definition A.5 (Generator). Given a Markov jump process {Ut}{t≥0} with jump rates
{qij}E×E and any function f : E → R, we define a generator L to be:

Lf(i) =
∑
j∈E

qij(f(j)− f(i)).

Proposition A.6. If the expectation is well-defined, we have:

E[f(Ut)] = E
[
f(U0) +

∫ t

0

Lf(Us) ds
]

= E

[
f(U0) +

∫ t

0

∑
j∈E

qUsj(f(j)− f(Us)) ds

]
.

Moreover, f(Ut)−
∫ t

0
Lf(Us) ds defines a martingale.

A.3 Martingales and the Optional Sampling Theorem

We recall Doob’s inequality, which is a useful tool in the analysis of càdlàg mar-
tingales.

Lemma A.7 (Doob’s inequality). [Le Gall (2012), Proposition 3.8] Given {Ut}t≥0 a
càdlàg super-martingale, then for all t > 0, λ > 0

λP
[

sup
0≤s≤t

|Us| > λ

]
≤ E[|U0|] + 2E[|Ut|],

in the case where {Ut}t≥0 is a martingale, we have

E
[

sup
0≤s≤t

|Us|2
]
≤ 4E[|Ut|2].
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We mostly use the second inequality in this paper.
One of the most useful consequences of this lemma is the following martingale

convergence theorem, readers are referred to Doob (1953) for details.

Theorem A.8 (L2 bounded martingale). Given {Ut}t≥0 a family of L2 bounded
càdlàg sub-martingale (super-martingale) i.e.

sup
t≥0

E[U2
t ] <∞,

then there exists a limit U∞ such that

Ut
L2

−→
a.s
U∞.

The optional sampling theorem, also called the optional stopping theorem, is a
standard result in martingale theory.

Theorem A.9 (Optional sampling). [Le Gall (2012), Theorem 3.6] Let Mt be a
martingale and T be a stopping time, then under certain conditions:

E(MT ) = E(M0).

One of the conditions that this result holds is when T is bounded almost surely,
which is why we use τ̄ ∧ t for a finite t in the proof of Theorem 4.1. Another such
condition is supt≥0 E[M2

t ] < ∞ and T < ∞ almost surely. This version is used in
proving Proposition B.3.

A.4 Coupling of Probability Spaces

Coupling is a very useful trick in statistics for comparing two random spaces in a
deterministic way. To do this, we need to put many random spaces into one. This
statement seems quite abstract, so we directly give its construction and then we shall
see its advantages.

Definition A.10 (Canonical space). We construct a canonical random space (Ω,F ,P)
as follows. Given a series of independent uniform [0, 1] random variables {Ui}i≥1, {Vi}i≥1,
we construct (Xt, Yt, Zt)t≥0 with initial data (X0, Y0, Z0):

Xt+1 = Xt + 1{p≤Ut+1≤1}1{0≤Vt+1<
Xt

Xt+rYt
},

Yt+1 = Yt + 1{0≤Ut+1<p},

Zt+1 = Zt + 1{p≤Ut+1≤1}1{ Xt
Xt+rYt

≤Vt+1≤1}.

One can directly verify that this construction agrees with our dynamics (before
reaching τ). What’s more, we could realize the dynamics of different parameters
(p, r,K) in the same probability space so we could compare them path by path. In
fact we have the following important lemma and will use it in the proofs.
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Lemma A.11 (Monotonicity). In the canonical random space, we note the dynamics
with parameter p by (Xt(p), Yt(p), Zt(p))t≥0 and the slope by Rt(p). Then ∀ω ∈ Ω,
0 < p1 < p2, we have

Xt(p1)(ω) ≥ Xt(p2)(ω),

Yt(p1)(ω) ≤ Yt(p2)(ω),

Rt(p1)(ω) ≥ Rt(p2)(ω).

Proof. Yt(p1)(ω) ≤ Yt(p2)(ω) is very easy by observing 1{0≤Ut+1<p1}(ω) ≤ 1{0≤Ut+1<p2}(ω).
The comparisons of Xt’s and Rt’s can be done by simple induction (together).

Appendix B The Proofs in Section 3

In this subsection we prove Theorem 3.1. A key lemma of the proof is the following:

Lemma B.1 (Long run behavior). Conditional on τ = ∞, Rt
a.s.→ R̄ ∨ 0. Con-

cretely,

1. Insufficient repugnance: If p(1+r) < 1, then the limit of Rt is almost surely
R̄.

2. Sufficient repugnance: If p(1 + r) ≥ 1, then the limit of Rt is almost surely
0.

To prove Lemma B.1, instead of studying our original discrete Markov process
(Xt, Yt, Zt), we construct a new continuous process (Xt,Yt,Zt)t≥0

25 that reproduces
the relevant properties of the discrete process, and use it to study their common be-
havior in the limit.

In continuous time, we consider a Markov jump process (Xt,Yt,Zt)t≥0:

1. It has the same initial state as the discrete process, i.e. (X0,Y0,Z0) = (X0, Y0, Z0).

2. At any moment, each drug user has two clocks which ring independently at
exponential time with parameters (1− p) and p respectively, and when the first
rings a new drug user enters the market, while when the second rings a new drug
despiser enters.

3. At any moment, each drug despiser has two clocks which ring independently at
exponential time with parameters (1 − p)r and pr respectively, and when the
first rings a new drug neutral enters the market, while when the second rings a
new drug despiser enters.

4. The clocks of different individuals are all independent.
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Figure 1: An image showing the (individual) rate of growth and mutation

Recall that for two independent exponential clocks Γ1 and Γ2 with rates µ1 and
µ2, min{Γ1,Γ2} also follows an exponential distribution with rate µ1 + µ2, and
P[min{Γ1,Γ2} = Γ1] = µ1

µ1+µ2
and P[min{Γ1,Γ2} = Γ2] = µ2

µ1+µ2
.

Suppose we are at time t, with the current state of the world being (Xt,Yt,Zt),
then the total rates of the next person joining X , Y , and Z are (1− p)Xt, pXt + prYt
and (1 − p)rYt respectively, and the total rate of the next arrival is the sum of all
three, which is Xt + rYt. Therefore the probabilities that the next arrival joins X , Y ,
Z are (1− p) Xt

Xt+rYt , p and (1− p) rYt
Xt+rYt respectively, which agree with the transition

probability of (Xt, Yt, Zt) before τ . The difference between these two processes is that,
for the discrete process (Xt, Yt, Zt), the arrival time of the newcomer is always fixed
at 1, while in the continuous process (Xt,Yt,Zt), the arrival time of the newcomer
follows an exponential distribution with parameter Xt + rYt. If we only document
the states at the times of arrival in the continuous model, then it looks just like the
discrete process. Indeed, let σi denote the time of i-th arrival, it is well-known that
(Xσi ,Yσi ,Zσi) has the same limiting behavior as (Xi, Yi, Zi), conditional on τ = ∞.
Readers are referred to Durrett (2010) and Grimmett and Stirzaker (2001) for details.
In other words, we shall study the limit of Rt = Xt/Yt which will be the same as the
limit of Rt, conditional on τ =∞.

For the sake of exposition, let’s define another random variable

Wt ≡ Yt − (R̄)−1Xt

when R̄ 6= 0.
We begin by computing the first and second moments of Xt and Wt.

1. Expectation and second moment: We start the proof by computing the ex-
pectation and second moment of Xt. Using the formula provided by the generator

25The idea of studying a discrete process through a continuous time Markov jump model is first
introduced in the work Athreya and Karlin (1968) for the Pólya urn model.
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(Proposition A.6) with f(x) = x:26

E[Xt] = X0 + E
[∫ t

0

(1− p)Xs− ds
]

⇒ E[Xt] = X0e
(1−p)t .

We can also compute its second moment by using f(x) = x2 in Proposition A.6:

Since the jump rate at s is (1− p)Xs−, we get

E[X 2
t ] = X 2

0 + E
[∫ t

0

(1− p)Xs−((Xs− + 1)2 − (Xs−)2) ds

]
= X 2

0 +

∫ t

0

2(1− p)E[X 2
s−] + (1− p)E[Xs−] ds

⇒ E[X 2
t ] = X 2

0 e
2(1−p)t + X0(e2(1−p)t − e(1−p)t) .

However, since there is immigration from X to Y , the expectation and second
moment of Y are not easy to compute directly. Hence we study Wt instead.
Similarly to before, we have

E[Wt] = W0 + E
[∫ t

0

p(Xs− + rYs−)− (R̄)−1(1− p)Xs− ds
]

= W0 +

∫ t

0

prE[Ws] ds

⇒ E[Wt] =W0e
prt .

26We recall the explicit formula for first order differential equations:

d

dt
f(t) = γf(t) + g(t) =⇒ f(t) = f(0)eγt +

∫ t

0

eγ(t−s)g(s) ds.
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The calculation of the second moment is more complicated:

E[W2
t ] = W2

0 + E
[∫ t

0

p(Xs− + rYs−)
(
(Ws− + 1)2 −W2

s−
)

+(1− p)Xs−
(
(Ws− − (R̄)−1)2 −W2

s−
)
ds
]

= W2
0 + E

[∫ t

0

p(Xs− + rYs−)(2Ws− + 1)

+(1− p)Xs−
(
−2(R̄)−1Ws− + (R̄)−2

)
ds
]

= W2
0 + E

∫ t

0

2Ws−
(
p(Xs− + rYs−)− (R̄)−1(1− p)Xs−

)︸ ︷︷ ︸
=prWs−

+p(Xs− + rYs−) + (R̄)−2(1− p)Xs− ds
]

= W2
0 + E

[∫ t

0

2prW2
s− + p(Xs− + rYs−) + (R̄)−2(1− p)Xs− ds

]
.

Now solve for E[W2
t ]:

E[W2
t ] = W2

0e
2prt +

∫ t

0

e2pr(t−s)E
[
p(Xs− + rYs−) + (R̄)−2(1− p)Xs−

]
ds

= W2
0e

2prt +

∫ t

0

e2pr(t−s)E
[
prWs− +

(
p+ (R̄)−2(1− p) + prR̄−1

)
Xs−

]
ds

= W2
0e

2prt +

∫ t

0

e2pr(t−s) [prW0e
prs +

(
p+ (R̄)−2(1− p) + prR̄−1

)
X0e

(1−p)s] ds
⇒ E[W2

t ] ≤ W2
0e

2prt + C1(t)e(1−p)t + C2(t)eprt + C3(t)e2prt .

Here we neglect the explicit expressions of C1, C2, C3 but they are polynomials
of t with degree at most 1.

2. Insufficient repugnance case: In this case, we have 1 − p > pr (i.e. R̄ > 0)
and we prove the following results:

Proposition B.2 (Scaling limit of e−(1−p)tXt and e−(1−p)tWt). In the case 1−p >
pr,

(a) {e−(1−p)tXt}t≥0 is a positive martingale which converges almost surely and
in L2 to a limit E that is positive almost surely.

(b) {e−prtWt}t≥0 is a martingale and {e−(1−p)tWt}t≥0 converges almost surely
and in L2 to 0.

Proof. Using the formula of expectations: ∀0 ≤ s < t,

E[Xt|Fs] = Xse(1−p)(t−s) ⇒ E[e−(1−p)tXt|Fs] = e−(1−p)sXs,
E[Wt|Fs] =Wse

pr(t−s) ⇒ E[e−prtWt|Fs] = e−prsWs.
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So {e−(1−p)tXt}t≥0 and {e−prtWt}t≥0 are indeed martingales. Then, using the
formula of the second moment, we have

sup
t≥0

E[(e−(1−p)tXt)2] = sup
t≥0

(
X 2

0 + X0(1− e−(1−p)t)
)
<∞,

which implies the almost sure and L2 convergence of {e−(1−p)tXt}t≥0 by Theo-
rem A.8. Identifying the exact limit of e−(1−p)tXt is more complicated and has no
direct use in our proof; we only need the fact that it is positive almost surely. In
fact, it is known to be an exponential distribution, which serves our purpose.27

We refer the readers to page 109 of Athreya et al (2004), where we get the explicit
formula for the quantity E[sXt ]:

E[sXt ] =
se−(1−p)t

1− (1− e−(1−p)t)s
.

We take that s = ehe
−(1−p)t

, h < 1, in this formula and let t go to ∞, then we get
the limiting moment-generating function for e−(1−p)tXt:

E[ehe
−(1−p)tXt ] =

ehe
−(1−p)t

e−(1−p)t

1− (1− e−(1−p)t)ehe−(1−p)t
t→∞−−−→ 1

1− h
.

This implies the limit follows a exponential distribution of parameter 1.

The treatment of e−(1−p)tWt is more difficult since (1−p) is not the proper power
to make it a martingale, while e−prtWt is not always bounded in L2. So we go
back to Doob’s inequality in Lemma A.7.

E
[

max
n≤t<n+1

|e−(1−p)tWt|2
]

≤ e−2(1−p−pr)nE
[

max
n≤t<n+1

|e−prtWt|2
]

≤ e−2(1−p−pr)n (4E[(e−pr(n+1)Wn+1)2]
)

≤ 4e−2(1−p)n (C ′1(n)e(1−p)n + C ′2(n)eprn + C ′3(n)e2prn
)

≤ 4
(
(C ′2(n) + C ′3(n))e−2(1−p−pr)n + C ′1(n)e−(1−p)n)

→ 0.

⇒ E[|e−(1−p)tWt|2] ≤ E
[

max
btc≤t<btc+1

|e−(1−p)tWt|2
]

t→∞−−−→ 0,

27This statement and the following verification assumes X0 = 1. When X0 > 1, the limiting
distribution will be the sum of X0 many independent exponential distributions, which is not another
exponential distribution, but is positive almost surely.
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where C ′1, C ′2 and C ′3 are polynomials of degree at most 1. This gives the L2

convergence. Furthermore, by Markov’s inequality we have:

∞∑
n=1

P
[

max
n≤t<n+1

|e−(1−p)tWt| > ε

]
≤

∞∑
n=1

1

ε2
E
[

max
n≤t<n+1

|e−(1−p)tWt|2
]

≤
∞∑
n=1

1

ε2
4
(
(C ′2(n) + C ′3(n))e−2(1−p−pr)n + C ′1(n)e−(1−p)n)

< ∞

⇒ P
[{

max
n≤t<n+1

|e−(1−p)tWt| > ε

}
i.o.

]
= 0,

by the Borel-Cantelli lemma. This gives the desired almost sure convergence.

Finally, we conclude that Proposition B.2 implies our result in the insufficient
repugnance case, by the continuous mapping theorem:

Xt
Yt

=
e−(1−p)tXt

e−(1−p)tWt + (R̄)−1e−(1−p)tXt
a.s.→ R̄.

3. Sufficient repugnance case: p(1 + r) ≥ 1⇔ R̄ ≤ 0⇔ 1− p ≤ pr.

We recall Lemma A.11 of monotonicity. Then ∀1 ≥ p ≥ 1
1+r

,

0 ≤ limRt(p) ≤ limRt

(
1

1 + r

)
≤ lim

q↗ 1
1+r

−
limRt(q) = 0,

where limRt(p) ≥ 0 comes from the fact that Xt, Yt are positive. Therefore Rt
a.s.→

0 in the sufficient repugnance case, which concludes the proof of Lemma B.1. �

A direct consequence of Lemma B.1 is that, in the controllable case, p(1+r+Kr) >
1, i.e. R̄ < Kr, the market will become extinct with probability 1. Suppose otherwise,
then τ = ∞ by Proposition 2.4, and by Lemma B.1, Rt will eventually drop below
Kr, which is a contradiction. This proves statement (1) of Theorem 3.1.

For the uncontrollable case, i.e. when p < 1
1+r+Kr

⇔ R̄ > Kr, Lemma B.1

implies that if the market survives, then Rt
a.s.→ R̄. Next we show that the probability

of market extinction is strictly less than 1, with the help of the canonical space
introduced in Definition A.10.

Proof. To study whether Rt will ever go below Kr, i.e. whether τ < ∞, we study
St = Xt −KrYt in the canonical space (it is clear from definition that Rt ≤ Kr ⇔
St ≤ 0):

St+1 = St + 1{p≤Ut+1<1}1{0≤Vt+1<
Xt

Xt+rYt
} −Kr1{0≤Ut+1<p}.
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It looks like a random walk. So we compare it with a simple random walk

S̄t+1 = S̄t + 1{p≤Ut+1<1}1{0≤Vt+1<
K

1+K
} −Kr1{0≤Ut+1<p}.

Before τ , we have Xt
Xt+rYt

> K
1+K

, so

1{0≤Vt+1<
Xt

Xt+rYt
}(ω) ≥ 1{0≤Vt+1<

K
1+K

}(ω).

By recurrence we obtain that ∀0 ≤ t ≤ τ, St ≥ S̄t.
This is good news since we understand the behavior of random walks well. By

computing the drift in the uncontrollable case:

E[S̄t+1 − S̄t] =
(1− p)K

1 +K
−Krp =

[1− p(1 + r +Kr)]K

1 +K
> 0,

thus {S̄t}t≥0 has a positive probability to escape to infinity without ever touching
the negative axis, so does {St}t≥0 since it always stays right of the former.28 (See
chapter 4 of Durrett (2010) for details.) This means there is a positive probability
that Rt > Kr, ∀t, i.e. τ =∞. In other words, there is a positive probability that the
market will survive, which concludes the proof of statement (3) of Theorem 3.1.

Finally in the borderline case, the question is whether the process (Xt,Yt) will
reach a state where Rt ≤ R̄ = Kr, or equivalently whether the process Wt will ever
reach the positive axis (recall that W0 is assumed to be negative, when R̄ = Kr). If
we define

T = inf {t|Wt ≥ 0} ,

then the problem becomes whether T < ∞ almost surely. The answer depends on
the parameters, since the size of the variance ofWt depends on them. More precisely,
we can summarize the results in the following proposition:

Proposition B.3. In the borderline case, i.e. when R̄ = Kr:

1. Small variance: 1− p < 2pr ⇐⇒ K < 1. Then T has a positive probability
to be infinite and (Xt,Yt) has a positive probability to always stay above the slope
R̄, in other words, the market has a positive probability of surviving.

2. Big variance: 1 − p ≥ 2pr ⇐⇒ K ≥ 1. Then T is almost surely finite and
(Xt,Yt) will finally pass the slope, meaning the market always becomes extinct.

28To be rigorous, we need to show that St > 0, ∀t given that S̄t > 0, ∀t. We can prove it by
induction. The base case is trivial: S0 = S̄0 > 0. Suppose the statement is true at time t, i.e.
St > 0, then τ > t, and since t is discrete, we have τ ≥ t+ 1. Thus St+1 ≥ S̄t+1 > 0, which finishes
the inductive step. Therefore indeed τ =∞ and St ≥ S̄t, ∀t.
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To prove Proposition B.3, first we need to carefully compute the second moment
of Wt, continuing from:

E[W2
t ] =W2

0e
2prt+

∫ t

0

e2pr(t−s) [prW0e
prs +

(
p+ (R̄)−2(1− p) + prR̄−1

)
X0e

(1−p)s] ds.
Denote A =

(
p+ (R̄)−2(1− p) + prR̄−1

)
, then

• 1− p− 2pr > 0:

E[W2
t ] =W2

0e
2prt +W0(e2prt − eprt) +

A

1− p− 2pr
X0(e(1−p)t − e2prt),

and the typical size of E[W2
t ] is at the order of e(1−p)t.

• 1− p− 2pr = 0:

E[W2
t ] =W2

0e
2prt +W0(e2prt − eprt) + AX0te

2prt,

and the typical size is of te2prt.

• 1− p− 2pr < 0:

E[W2
t ] =W2

0e
2prt +W0(e2prt − eprt) +

A

2pr − (1− p)
X0(e2prt − e(1−p)t).

This expression is the same as in the first case, but its typical size is of e2prt.

Now we are ready to prove the borderline case:

Proof of Proposition B.3.

1. Small variance (1−p < 2pr): We prove by contradiction, suppose that T <∞
almost surely, and we observe that (recall that T = inf {t|Wt ≥ 0}):

E[(e−prtWt)
2] = W2

0 +W0(1− e−prt) +
A

2pr − (1− p)
X0(1− e(1−p−2pr)t)

⇒ sup
t≥0

E[(e−prtWt)
2] <∞.

So applying Theorem A.9 to the martingale {e−prtWt}t≥0 and we obtain

0 ≤ E[e−prTWT ] = E[W0] < 0,

which is a contradiction.
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2. Big variance (1− p ≥ 2pr): We define

Mt = e−prtWt

and
T−M = inf{t|Mt ≤ −M}.

Notice now the definition of T is equivalent to

T = inf{t|Mt ≥ 0},

and we define a condition (F):

∀M > 0, T ∧ T−M := min{T, T−M} <∞ a.s.

Suppose that condition (F) is satisfied, then(
MT∧T−M

t

)
t≥0

:=
(
Mt∧T∧T−M

)
t≥0

is a bounded martingale, so it has bounded L2 norm and we could apply Theo-
rem A.9 again and obtain that (notice MT ≤ 1,MT−M ≤ −M):

W0 = E[M0] = E[MT∧T−M ]

= E
[
MT1{T<T−M}

]
+ E

[
MT−M1{T≥T−M}

]
≤ P[T < T−M ] + (−M)(1− P[T < T−M ])

⇒ M +W0 ≤ (M + 1)P[T < T−M ]

⇒ P[T < T−M ] ≥ M +W0

M + 1
.

By passing M to ∞, we get

P[T <∞] = lim
M→∞

P[T < T−M ] ≥ lim
M→∞

M +W0

M + 1
= 1.

The rest is devoted to verifying condition (F). By Theorem A.8: since (Mt∧T∧T−M )t≥0

is a bounded martingale, it converges. This means either it touches the two bar-
riers, or it converges without touching the two barriers. What we need to show
is that the latter will not happen.

By way of contradiction, suppose (F) is not true, i.e. assume

P[T ∧ T−M =∞] = ε > 0.

Using the formula of the second moment of Wt, we can compute that

lim
t→s+

E[W2
t |Fs]−W2

s

t− s
= 2prW2

s + prWs + AXs.
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Using the product rule for derivatives:

lim
t→s+

E[e−2prtW2
t |Fs]− e−2prsW2

s

t− s
= −2pre−2prsW2

s + e−2prs(2prW2
s + prWs + AXs)

= e−2prs(prWs + AXs).

Integrate for both sides we get

E
[
e−2prtW2

t −
∫ t

s

e−2pru(prWu + AXu)m(du) | Fs
]

= e−2prsW2
s ,

where m denotes the usual Lebesgue measure.

This means
(
e−2prtW2

t −
∫ t

0
e−2pru(prWu + AXu)m(du)

)
t≥0

is a martingale, so

is the version with the stopping time:

(
e−2prt∧T∧T−MW2

t∧T∧T−M −
∫ t∧T∧T−M

0

e−2pru(prWu + AXu)m(du)

)
t≥0

.

Using the definition of
(
MT∧T−M

t

)
t≥0

, we have:(
(MT∧T−M

t )2 −
∫ t∧T∧T−M

0

(pre−pruMu + e−2pruAXu)m(du)

)
t≥0

is a martingale. Therefore,

E
[
(MT∧T−M

t )2 −
∫ t∧T∧T−M

0

(pre−pruMu + e−2pruAXu)m(du)

]
=M2

0.

Rearrange, we get:

E
[
(MT∧T−M

t )2 −
∫ t∧T∧T−M

0

pre−pruMum(du)

]
−M2

0 = E
[∫ t∧T∧T−M

0

e−2pruAXum(du)

]
.

(B.4)

When u ≤ T ∧ T−M , Mu is bounded, so the integral in the LHS of eq. (B.4) is

bounded. Also, (MT∧T−M
t )t≥0 is bounded, therefore

∀t > 0,LHS of eq. (B.4) is bounded

⇒ lim sup
t→∞

LHS of eq. (B.4) is bounded.
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On the other hand, by Proposition B.2, for almost every sample path ω, e−(1−p)tXt(ω)
converges to a positive limit E(ω) > 0, thus ∃N(ω) > 0 such that ∀u >
N(ω), e−(1−p)uXu(ω) ≥ 1

2
E(ω). Moreover, since 1− p ≥ 2pr, we have e−2pruXu ≥

e−(1−p)uXu. Therefore,

lim sup
t→∞

∫ t

0

e−2pruAXu(ω)1{T∧T−M=∞}m(du)

≥ lim sup
t→∞

∫ t

N(ω)

e−2pruAXu(ω)1{T∧T−M=∞}m(du)

≥ lim sup
t→∞

∫ t

N(ω)

e−(1−p)uAXu(ω)1{T∧T−M=∞}m(du)

≥ lim sup
t→∞

∫ t

N(ω)

1

2
E(ω)A1{T∧T−M=∞}m(du)

= ∞ · 1{T∧T−M=∞}.

By the monotone convergence theorem, the right hand side of eq. (B.4) satisfies:

lim sup
t→∞

RHS of eq. (B.4) = lim sup
t→∞

E
[∫ t∧T∧T−M

0

e−2pruAXum(du)

]
= E

[
lim sup
t→∞

∫ t∧T∧T−M

0

e−2pruAXum(du)

]
≥ E

[
lim sup
t→∞

∫ t

0

e−2pruAXu(ω)1{T∧T−M=∞}m(du)

]
≥ E

[
∞ · 1{T∧T−M=∞}

]
= ∞× ε =∞.

This contradicts the fact that the lim sup of LHS of eq. (B.4) is bounded.

We have now proved all three statements of Theorem 3.1.

Appendix C Speed of Extinction

In this section we prove Theorem 4.1, part 2. We use the same notations as in the
proof of Theorem 4.1, part 1.

Proof. Applying Theorem A.9 to the martingale Mn(θ) = eθS̄n−nψ(θ), we have29

E[eθS̄t∧τ−(t∧τ)ψ(θ)] = eθS0 .

29To make sure τ is a well-defined stopping time, we need to include St (or (Xt, Yt, Zt)) in the
filtration of Mn(θ). And it is clear that Mn(θ) is a martingale adapted to such a filtration.
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Recall that for every sample path ω, St(ω) ≥ S̄t(ω) and θ < 0, then

E
[
eθSt∧τ−(t∧τ)ψ(θ)1{τ<∞}

]
≤ E

[
eθS̄t∧τ−(t∧τ)ψ(θ)1{τ<∞}

]
≤ E

[
eθS̄t∧τ−(t∧τ)ψ(θ)

]
= eθS0 .

By Fatou’s lemma we have:

E
[
lim inf
t→∞

eθSt∧τ−(t∧τ)ψ(θ)1{τ<∞}

]
≤ lim inf

t→∞
E
[
eθSt∧τ−(t∧τ)ψ(θ)1{τ<∞}

]
≤ eθS0 .

This gives us a very useful inequality

E
[
eθSτ−τψ(θ)1{τ<∞}

]
≤ eθS0 ,

which implies

E
[
eθSτ−τψ(θ)1{τ<∞}1{τ>t}

]
≤ E

[
eθSτ−τψ(θ)1{τ<∞}

]
≤ eθS0 .

Recall that Sτ ≤ 0, θ < 0 and ψ(θ) < 0, then

eθSτ1{τ<∞} ≥ 1{τ<∞},

e−τψ(θ)1{τ>t} ≥ e−tψ(θ)1{τ>t}.

Therefore
P[τ <∞, τ > t]e−tψ(θ) ≤ eθS0 .

Thus we conclude that

P[τ > t|τ <∞] ≤ 1

P[τ <∞]
eθS0+tψ(θ).

Finally, we remark that one can find the best upper bound by minimizing the RHS
over θ.

Appendix D Endogenous Parameters

A natural way of endogenizing the parameters is to define them as functions of the
current state of the world. In this section, instead of having p and r as fixed constants,
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we study the case when pt+1 = H( Yt
Xt+Yt+Zt

) and rt+1 = Q( Yt
Xt+Yt+Zt

), where H and Q
are two continuous functions. In other words, the extent and intensity of repugnance
may depend on the current proportion of drug despisers in the system. Unfortunately
those techniques we employed previously do not carry over directly, therefore we
present a heuristic analysis (and partial proofs) together with some simulations to
provide a robustness check for our results.

It is clear that if the system eventually stabilizes, i.e. limt→∞ pt = p∗, and
limt→∞ rt = r∗, then it has to be the case that limt→∞

Yt
Xt+Yt+Zt

= p∗, by the law
of large numbers. Hence p∗ satisfies the equation p∗ = H(p∗), i.e. p∗ is a fixed point
of H. Once p∗ is determined, then r∗ = Q(p∗) is also determined. Therefore essen-
tially, even though now p and r are endogenous, we can treat them as constants p∗

and r∗ in the long run. And Theorem 3.1 should still hold in this extension, if we
replace p and r by p∗ and r∗.

However, there is a complication: not all fixed points of H become the limit of pt;
there are also saddle points. To see this, define vt = Yt

Xt+Yt+Zt
and N = Xt + Yt + Zt.

E[vt+1|Xt, Yt, Zt]− vt = H(vt)
Yt + 1

N + 1
+ (1−H(vt))

Yt
N + 1

− Yt
N

=
Yt +H(vt)

N + 1
− Yt
N

=
1

N + 1
(H(vt)− vt).

Therefore E[vt+1|Xt, Yt, Zt] > vt ⇔ H(vt) > vt. If we want vt to stabilize around
some p∗, it has to be the case that when vt > p∗, E[vt+1|Xt, Yt, Zt] < vt and when
vt < p∗, E[vt+1|Xt, Yt, Zt] > vt, so vt is pushed towards p∗ in expectation. That
means, for any v in a small neighborhood of p∗, we have v < p∗ ⇔ H(v) > v (?). If
condition (?) is not satisfied, then vt is pushed away from p∗, and p∗ will be a saddle
point, instead of a stabilizing limit of pt.

In fact, the convergence of vt is studied in Hill, Lane, and Sudderth (1980) (see
also Pemantle 1990). And their conclusions (with rigorous proofs) agree with our
heuristic analysis. Specifically, Theorem 2.1 in their paper says that vt converges
almost surely (as a random variable). Then Corollary 3.1 in their paper implies that
almost surely the limit of vt satisfies x = H(x). Finally Theorem 5.1 in their paper
confirms that only the fixed points that satisfy condition (?) are in the support of the
limit. Therefore we do have the convergence result for Yt

Xt+Yt+Zt
, pt+1 = H( Yt

Xt+Yt+Zt
)

and rt+1 = Q( Yt
Xt+Yt+Zt

) (by the continuous mapping theorem). Unfortunately we can
not rigorously prove the convergence of Rt. Although through simulations we do see
that Rt converges to 1−p∗−p∗r∗

p∗
.

To summarize, if p∗ is a fixed point of H and (?) is satisfied, then p∗ is a potential
stabilizing point of pt. Given a market, if some of these stabilizing p∗’s satisfy p∗(1 +
r∗ + Kr∗) < 1, then the market will survive with a positive probability, and R̄∗ =
1−p∗−p∗r∗

p∗
is one potential limit for Rt. (If multiple R̄∗’s exist, then the limit of Rt
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depends on the realization.) Otherwise, if p∗(1 + r∗ + Kr∗) > 1 for all such p∗, then
the market becomes extinct almost surely. Below we provide some simulations to
illustrate this result.

First, consider a linear example with H(u) = 0.2 + 0.6u, and Q(u) = 0.1 + u2. It
is clear that the unique fixed point of H is p∗ = 0.5, and (?) is satisfied. And we can
compute that r∗ = 0.35 and R̄∗ = 0.65. When K = 1, the market is uncontrollable,
Figure 2 below shows the convergence of pt and rt, and Figure 3 shows the convergence
of Rt = Xt/Yt. Only one out of forty paths reaches extinction, which agrees with the
exponential decay pattern in Theorem 4.1. The threshold K (to be the borderline
case) in this example is 13/7, we did 1000 simulations for K = 2 and all realizations
die before time 108.

Figure 2: Convergence of pt and rt with 1 fixed point
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Figure 3: Convergence of Rt with 1 fixed point

To demonstrate condition (?), consider H(u) = 0.5+0.3sin(10u), r = 0.1, K = 0.5.
There are three solutions of H(u) = u, they are (approximately) 0.362, 0.702, 0.798.
From Figure 4 below, we can see that 0.362 and 0.798 satisfy (?), while 0.702 does
not. And indeed, Figure 6 shows that, the R̄∗’s corresponding to 0.362 and 0.798,
1.66 and 0.153, are limits of realized Rt’s, while R̄∗ = 0.325, corresponding to 0.702,
is not.
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Figure 4: Fixed points

Figure 5: Convergence of pt and rt with 3 fixed points
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Figure 6: Convergence of Rt with 3 fixed points
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